Quasilinear elliptic equations with subquadratic growth

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anisotropic quasilinear elliptic equations with variable exponent

We study some anisotropic boundary value problems involving variable exponent growth conditions and we establish the existence and multiplicity of weak solutions by using as main argument critical point theory. 2000 Mathematics Subject Classification: 35J60, 35J62, 35J70.

متن کامل

Quasilinear Elliptic Equations with Critical Exponents

has no solution if Ω ⊂ R , N ≥ 3, is bounded and starshaped with respect to some point, and 2∗ = 2N/(N − 2). In (P0) the nonlinear term is a power of u with the critical exponent (N + 2)/(N − 2). This terminology comes from the fact that the continuous Sobolev imbeddings H 0 (Ω) ⊂ L(Ω), for p ≤ 2∗ and Ω bounded, are also compact except when p = 2∗. This loss of compactness reflects in that the ...

متن کامل

Quasilinear Elliptic Problems with Nonstandard Growth

We prove the existence of solutions to Dirichlet problems associated with the p(x)-quasilinear elliptic equation Au = − div a(x, u,∇u) = f(x, u,∇u). These solutions are obtained in Sobolev spaces with variable exponents.

متن کامل

On Quasilinear Elliptic Equations in Ir

In this note we give a result for the operator p-Laplacian complementing a theorem by Brézis and Kamin concerning a necessary and sufficient condition for the equation −∆u = h(x)u in IR , where 0 < q < 1, to have a bounded positive solution. While Brézis and Kamin use the method of sub and super solutions, we employ variational arguments for the existence of solutions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2006

ISSN: 0022-0396

DOI: 10.1016/j.jde.2006.01.016